Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

cis-(\pm)-Phenyl[2,4,5-tri-2-pyridyl-4,5dihydroimidazol-1-yl]methanone

José J. Campos-Gaxiola, Gerardo Aguirre and Miguel Parra-Hake*

Centro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apartado Postal 1166, 22500 Tijuana, BC, Mexico Correspondence e-mail: mparra@tectijuana.mx

Received 11 May 2007; accepted 30 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.057; wR factor = 0.140; data-to-parameter ratio = 12.4.

In the title compound, $C_{25}H_{19}N_5O$, two types of intermolecular interactions are observed. Edge-to-face $C-H\cdots\pi$ interactions between neighbouring molecules form a onedimensional network, while $C-H \cdots N$ and $C-H \cdots O$ interactions form a two-dimensional network.

Related literature

For related literature on supramolecular structures, see: Albrechet (2001); Leininger et al. (2000); on hydrogen bonding, see: Burchell & Puddephatt (2006); Gallego et al. (2004): Thallapally *et al.* (2003): on $\pi - \pi$ interactions. see: Zou et al. (2006); Liu et al. (2005); on C-H··· π interactions, see: Chen & Liu (2002); Janiak (2000); Planas et al. (2006); on properties of supramolecular architectures, see: Lehn (1995); Séneque et al. (2001); on related compounds, see: Campos-Gaxiola et al. (2007); Itoh et al. (2005); Jayaraman et al. (2006); Jennings et al. (2001); Kapildev et al. (2005); Larter et al. (1998); Majumder et al. (2006); Oxtoby et al. (2003); Parra-Hake et al. (2000); Reger et al. (2001); Roesky & Andruh (2003); Wang et al. (2006); Yang et al. (2006).

Experimental

Crystal data

α β

$C_{25}H_{19}N_5O$	$\gamma = 99.84 \ (4)^{\circ}$
$M_r = 405.45$	V = 1004.2 (7) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 8.004 (3) Å	Mo $K\alpha$ radiation
b = 10.085 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 13.432 (4) Å	T = 298 (2) K
$\alpha = 108.65 \ (4)^{\circ}$	$0.5 \times 0.42 \times 0.14$
$\beta = 93.56 \ (3)^{\circ}$	

Data collection

Bruker P4 diffractometer Absorption correction: none 3758 measured reflections 3483 independent reflections 1931 reflections with $I > 2\sigma(I)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.140$ S = 0.993483 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C13-H13A\cdotsO1^{i}$	0.93	2.57	3.469 (5)	163
$C15 - H15A \cdots N4^{i}$	0.93	2.56	3.483 (5)	171
$C5 - H5B \cdot \cdot \cdot N4^{ii}$	0.93	2.69	3.515 (5)	149
$C21 - H21A \cdots N3^{iii}$	0.93	2.56	3.413 (5)	153
$C5-H5B\cdots Cg1^{iv}$	0.93	3.24	3.906 (3)	129
$C22 - H22A \cdots Cg2^{v}$	0.93	2.91	3.775 (4)	153

 $0.42 \times 0.14 \text{ mm}$

every 97 reflections

intensity decay: 13.7%

H-atom parameters constrained

 $R_{\rm int} = 0.030$ 3 standard reflections

280 parameters

 $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 2; (iv) -x + 1, -y, -z + 2; (v) -x + 1, -y + 1, -z + 2. Notes: Cg1 and Cg2 are the centroids of rings C9-C13/N4 and C14-C18/N5, respectively.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Consejo del Sistema Nacional de Educación Tecnológica (COSNET) (grant No. 418.03-P). Support from the Consejo Nacional de Ciencia y Tecnología (CONACYT) in the form of a fellowship for JJCG is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2022).

References

- Albrechet, M. (2001). Chem. Rev. 101, 3457-3498.
- Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burchell, T. J. & Puddephatt, R. J. (2006). Inorg. Chem. 44, 3718-3730.
- Campos-Gaxiola, J. J., Höpfl, H. & Parra-Hake, M. (2007). J. Mex. Chem. Soc. 51. 5-10.
- Chen, X. M. & Liu, G. F. (2002). Chem. Eur. J. 8, 4811-4817.
- Gallego, M. L., Ovejero, P., Cano, M., Heras, J. V., Campo, E. P. & Torres, M. R. (2004). Eur. J. Inorg. Chem. pp. 3089-3098.

- Itoh, M., Nakazawa, J., Maeda, K., Mizutani, T. & Kodera, M. (2005). Inorg. Chem. 44, 691–702.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Jayaraman, A., Balasubramaniam, V. & Valiyaveettil, S. (2006). Cryst. Growth Des. 6, 636–642.
- Jennings, W. B., Farrel, B. M. & Malone, J. F. (2001). Acc. Chem. Res. 34, 885– 894.
- Kapildev, K., Pedireddi, A. & Pedireddi, V. R. (2005). Cryst. Growth Des. 5, 1309–1312.
- Larter, M. L., Phillips, M., Ortega, F., Aguirre, G., Somanathan, R. & Walsh, P. J. (1998). *Tetrahedron Lett.* **39**, 4785–4787.
- Lehn, J.-M. (1995). Supramolecular Chemistry: Concepts and Perspectives, edited by G. R. Desiraju, pp. 193–197. New York: Elsevier Science Publishers.
- Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853-908.
- Liu, C. B., Yu, M. X., Zheng, X. J., Jin, L. P., Gao, S. & Lu, S. Z. (2005). *Inorg. Chim. Acta*, 358, 2687–2696.
 Majumder, A., Gramlich, V., Rosair, G. M., Batten, S., Masuda, J. D., Fallah,
- Majunder, A., Grannich, V., Rosan, G. M., Batten, S., Masuda, J. D., Fanan, M. S., Ribas, J., Sutter, J. P., Desplanches, C. & Mitra, S. (2006). *Cryst. Growth Des.* 6, 2355–2368.
- Oxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2003). *CrystEngComm*, 5, 82–86.

- Parra-Hake, M., Larter, M. L., Ganzel, P., Aguirre, G., Ortega, F. & Walsh, P. J. (2000). *Inorg. Chem.* **39**, 5400–5403.
- Planas, J. G., Masalles, C., Sillanpaa, R., Kivekas, R., Teixidor, F. & Viñas, C. (2006). CrystEngComm, 8, 75–83.
- Reger, D. L., Semeniuc, R. F. & Smith, M. D. (2001). *Inorg. Chem.* 40, 6545–6546.
- Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119.
- Séneque, O., Giorgi, M. & Reinaud, O. (2001). Chem. Commun. pp. 984–985. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Thallapally, P. K., Katz, A. K., Carrell, H. L. & Desiraju, G. R. (2003). *CrystEngComm*, **5**, 87–92.
- Wang, X. L., Qin, C., Wang, E. B. & Xu, L. (2006). Cryst. Growth Des. 6, 2061– 2065.
- Yang, X. P., Jones, R. A., Oye, M. M., Holmes, A. L. & Wong, W. K. (2006). Cryst. Growth Des. 6, 2122–2125.
- Zou, R. Q., Liu, C. S., Huang, Z., Hu, T. L. & Bu, X. H. (2006). Cryst. Growth Des. 6, 99–108.

Acta Cryst. (2007). E63, o3126-o3127 [doi:10.1107/S1600536807026414]

cis-(±)-Phenyl[2,4,5-tri-2-pyridyl-4,5-dihydroimidazol-1-yl]methanone

J. J. Campos-Gaxiola, G. Aguirre and M. Parra-Hake

Comment

The coordination chemistry of transition metals with polypyridyl ligands has progressed considerably during the last decade, and has been widely used for the construction of coordination polymers and other supramolecular structures (Itoh *et al.*, 2005; Albrechy, 2001; Leininger *et al.*, 2000). Complex metal-organic coordination polymers, macrocycles, networks and other metallosupramolecular structures can be constructed by self-assembly from small, easily prepared building blocks, which are combined either through coordinative bonds, hydrogen bonding (Majumder *et al.*, 2006; Burchell *et al.* 2006; Gallego *et al.* 2004), π - π (Zou *et al.*, 2006; Liu *et al.*, 2005; Roesky *et al.*, 2003; Wang *et al.*, 2006) or CH/ π interactions (Chen *et al.*, 2002; Janiak *et al.*, 2000). Such supramolecular architectures have attracted considerable attention due to the useful electronic, magnetic, optical and catalytic properties of these materials (Lehn, 1995; Séneque *et al.*, 2001). In this direction, previous work in our laboratory has been focused on the coordination chemistry of the ligand *cis*-(±)2-(2,5di(pyridin-2-yl)-4,5-dihydro-1*H*-imidazol-4-yl)pyridine (Larter *et al.*, 1998) with transition metals such as Ni(II), Cu(II), Zn(II) (Parra-Hake *et al.*, 2000) and Cd(II) (Campos-Gaxiola *et al.*, 2007).

As part of our ongoing research on the chemistry of polypyridine ligands we have synthesized $Cis-(\pm)$ -phenyl[2,4,5-tri(pyridin-2-yl)-4,5- dihydroimidazol-1-yl]methanone (I) in order to modify the coordination environment that could assist in the formation of coordination macromolecules. To gain insight on the new coordination capabilities, the X-ray crystal structure of the title compound has been carried out (Fig. 1).

In the crystal structure, adjacent units are linked together by strong and weak edge-to-face C—H··· π interactions (Fig. 2) between pyridyl protons and the pyridyl ring [H··· π 3.250 (4) Å and C—H··· π 129.3 (2)°], phenyl protons and the pyridyl ring [H··· π 2.917 (4) Å and C—H··· π 154.0 (2)°](Yang *et al.*, 2006; Jennings *et al.*, 2001; Planas *et al.*, 2006; Jayaraman *et al.*, 2006; Reger *et al.*, 2001), to form one-dimensional chains along the [001] direction. In addition, adjacent units are arranged into a two-dimensional network propagated along the (011) plane *via* intermolecular C—H···N hydrogen bond interactions between the H-atoms of phenyl or pyridyl rings and pyridyl N atoms as well as C—H···O interactions between pyridyl protons and the O atom of carbonyl group (Fig. 3). The hydrogen bond distances are within the range found for other reported structures (Oxtoby *et al.*, 2003; Thallapally *et al.*, 2003; Kapildev *et al.*, 2005). These interactions may be attributed to the orientation of the aromatic rings, which help to stabilize the structure.

Experimental

To a stirring solution of cis-(±)2-(2,5-di(pyridin-2-yl)-4,5-dihydro-1*H*-imidazol-4-yl)pyridine (0.3 g, 0.9966 mmol) in dichloromethane (10 ml) was added Et₃N (0.5 g, 4.9807 mmol). After an additional 5 min, benzoyl chloride (0.28 g, 1.9931 mmol) and 4-dimethylaminopyridine (0.012 g, 0.0982 mmol) was added. The solution was stirred for 22 h at room temperature. The resulting mixture was washed with 0.1 N NaOH (3 × 10 ml). The organic layer was dried over MgSO₄, filtered, and the solvent removed under reduced pressure. The remaining solid was crystallized from CH₂Cl₂/pentane by gas phase diffusion providing colourless crystals that were dried under high vacuum. Yield (0.1930 g, 48%) Mp: 248–250 °K. IR (KBr): 3039, 2929, 2852, 1651, 1613, 1589, 1473, 1438, 1354, 1147, 996, 784, 704 cm^{-1. 1}H NMR (CDCl₃, 500 MHz): d8.34 (ta, J = 4.8, 2H), 8.24 (da, J = 4.6, 2.0, 0.8 Hz,1H), 7.85 (d, J = 7.5 Hz,1H), 7.62 (td, J = 7.7, 2.0 Hz, 1H), 7.42–7.38 (m, 3H),7.32 (td, J = 7.5, 1.6, Hz, 1H), 7.23–7.16 (m, 2H), 7.15 (ddd, J = 7.6, 4.8, 1.1 Hz, 1H), 7.09 (t, J = 7.6 Hz, 3H), 6.95 (ddd, J = 7.4, J = 4.9, J = 1.0 Hz,1H), 6.91 (ddd, J = 7.5, 4.8, 1.0 Hz, 1H), 6.08 (d, J = 9.1 Hz, 1H), 6.05 (d, J = 9.1 Hz, 1H). ¹³C NMR (CDCl₃ 125.7 MHz): 168.83, 161.43, 157.52, 156.53, 150.14, 149.04, 148.96, 148.89, 148.33, 136.11, 135.88, 153.47, 131.04, 128.43, 127.77, 124.41, 122.85, 122.34, 121.97, 121.90, 75.40, 70.36. EMIES *m/e* (int. *rel.*): [M+H]⁺ 406 (100%).

Refinement

The sample partially decomposed in the X-ray beam (13% decay). Refinement of H atoms was carried out using a riding model, with distances constrained to 0.93 Å for aromatic CH, 0.98 Å for methine CH. Isotropic U parameters were fixed at $U_{iso}(H) = 1.2U_{eq}(\text{carrier atom})$ for aromatic CH and methine CH.

Figures

Fig. 1. Molecular structure of (I) with 30% thermal ellipsoid and labeling schemes.

. 1 1 .

Fig. 2. Edge-to-face C—H $\cdots\pi$ interactions between neighboring molecules form chains along the [001] direction. All interactions are indicated by dashed lines.

Fig. 3. C—H…N and C—H…O interactions form two-dimensional networks along the (011) plane. All interactions are indicated by dashed lines.

cis-(±)-Phenyl[2,4,5-tri-2-pyridyl-4,5-dihydroimidazol-1-yl]methanone

Crystal dala	
C ₂₅ H ₁₉ N ₅ O	Z = 2
$M_r = 405.45$	$F_{000} = 424$
Triclinic, P1	$D_{\rm x} = 1.341 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 8.004 (3) Å	Cell parameters from 39 reflections
b = 10.085 (4) Å	$\theta = 4.6 - 11.6^{\circ}$
c = 13.432 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 108.65 \ (4)^{\circ}$	T = 298 (2) K
$\beta = 93.56 \ (3)^{\circ}$	Prismatic, colourless
$\gamma = 99.84 \ (4)^{\circ}$	$0.5 \times 0.42 \times 0.14 \text{ mm}$
V = 1004.2 (7) Å ³	

Data collection

Bruker P4 diffractometer	$R_{\rm int} = 0.030$
Radiation source: fine-focus sealed tube	$\theta_{max} = 25.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.2^{\circ}$
T = 298(2) K	$h = 0 \rightarrow 9$
$2\theta/\omega$ scans	$k = -11 \rightarrow 11$
Absorption correction: none	$l = -15 \rightarrow 15$
3758 measured reflections	3 standard reflections
3483 independent reflections	every 97 reflections
1931 reflections with $I > 2\sigma(I)$	intensity decay: 13.7%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.140$	$w = 1/[\sigma^2(F_o^2) + (0.0581P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\rm max} = 0.010$
3483 reflections	$\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$
280 parameters	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4369 (4)	0.1653 (3)	0.7048 (2)	0.0388 (7)
C2	0.4347 (4)	0.1829 (3)	0.5448 (2)	0.0433 (8)
H2B	0.5467	0.1729	0.5211	0.052*
C3	0.4522 (4)	0.3372 (3)	0.6233 (2)	0.0435 (8)
H3B	0.5464	0.4015	0.6087	0.052*

C4	0.4006 (4)	0.1088 (3)	0.7916 (2)	0.0388 (7)
C5	0.3979 (4)	-0.0332 (3)	0.7776 (3)	0.0479 (8)
H5B	0.4261	-0.0932	0.7152	0.057*
C6	0.3527 (5)	-0.0842 (4)	0.8574 (3)	0.0589 (10)
H6A	0.3497	-0.1795	0.8500	0.071*
C7	0.3124 (4)	0.0069 (4)	0.9475 (3)	0.0578 (10)
H7A	0.2817	-0.0248	1.0029	0.069*
C8	0.3181 (4)	0.1471 (4)	0.9550 (3)	0.0539 (9)
H8A	0.2899	0.2086	1.0167	0.065*
C9	0.3068 (4)	0.1464 (3)	0.4479 (2)	0.0415 (8)
C10	0.1672 (4)	0.0362 (3)	0.4222 (3)	0.0513 (9)
H10A	0.1478	-0.0208	0.4644	0.062*
C11	0.0569 (5)	0.0117 (4)	0.3332 (3)	0.0625 (10)
H11A	-0.0397	-0.0612	0.3146	0.075*
C12	0.0912 (5)	0.0962 (4)	0.2719 (3)	0.0583 (10)
H12A	0.0182	0.0819	0.2112	0.070*
C13	0.2343 (5)	0.2014 (4)	0.3016 (3)	0.0557 (9)
H13A	0.2579	0.2573	0.2589	0.067*
C14	0.2925 (4)	0.3986 (3)	0.6281 (2)	0.0407 (8)
C15	0.2940 (5)	0.5330 (3)	0.6216 (3)	0.0561 (9)
H15A	0.3945	0.5878	0.6131	0.067*
C16	0.1466 (6)	0.5843 (4)	0.6277 (3)	0.0683 (11)
H16A	0.1453	0.6745	0.6236	0.082*
C17	0.0008 (5)	0.5011 (4)	0.6399 (3)	0.0669 (11)
H17A	-0.1013	0.5337	0.6449	0.080*
C18	0.0088 (5)	0.3687 (4)	0.6447 (3)	0.0587 (9)
H18A	-0.0912	0.3117	0.6514	0.070*
C19	0.5967 (4)	0.4186 (3)	0.8071 (2)	0.0459 (8)
C20	0.6959 (4)	0.3814 (3)	0.8878 (2)	0.0401 (8)
C21	0.7149 (4)	0.4693 (3)	0.9926 (3)	0.0479 (8)
H21A	0.6591	0.5457	1.0118	0.057*
C22	0.8166 (5)	0.4436 (4)	1.0685 (3)	0.0590 (10)
H22A	0.8246	0.5001	1.1392	0.071*
C23	0.9049 (5)	0.3364 (4)	1.0408 (3)	0.0632 (10)
H23A	0.9764	0.3222	1.0921	0.076*
C24	0.8890 (4)	0.2488 (4)	0.9372 (3)	0.0565 (9)
H24A	0.9488	0.1749	0.9185	0.068*
C25	0.7838 (4)	0.2708 (3)	0.8608 (3)	0.0465 (8)
H25A	0.7721	0.2107	0.7908	0.056*
N1	0.5004 (3)	0.3120 (2)	0.72264 (18)	0.0417 (6)
N2	0.3949 (3)	0.0892 (3)	0.6083 (2)	0.0443 (7)
N3	0.3616 (3)	0.1996 (3)	0.8789 (2)	0.0448 (7)
N4	0.3427 (3)	0.2286 (3)	0.3890 (2)	0.0505 (7)
N5	0.1514 (4)	0.3169 (3)	0.6402 (2)	0.0522 (7)
O1	0.6116 (3)	0.5423 (2)	0.80961 (17)	0.0641 (7)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0382 (18)	0.0368 (17)	0.0389 (18)	0.0068 (14)	0.0009 (14)	0.0105 (15)
C2	0.0434 (19)	0.0461 (18)	0.0357 (18)	0.0063 (15)	0.0033 (15)	0.0092 (15)
C3	0.047 (2)	0.0443 (18)	0.0369 (18)	0.0011 (15)	0.0008 (15)	0.0160 (14)
C4	0.0349 (17)	0.0384 (17)	0.0388 (18)	0.0022 (14)	-0.0060 (14)	0.0119 (15)
C5	0.053 (2)	0.0417 (19)	0.047 (2)	0.0091 (16)	-0.0030 (16)	0.0156 (16)
C6	0.069 (3)	0.043 (2)	0.063 (2)	0.0028 (18)	-0.011 (2)	0.0245 (19)
C7	0.061 (2)	0.060 (2)	0.053 (2)	-0.0052 (19)	-0.0043 (18)	0.0316 (19)
C8	0.056 (2)	0.064 (2)	0.042 (2)	0.0058 (18)	0.0062 (17)	0.0199 (18)
C9	0.048 (2)	0.0400 (18)	0.0363 (18)	0.0123 (16)	0.0086 (15)	0.0102 (15)
C10	0.052 (2)	0.051 (2)	0.048 (2)	0.0009 (17)	0.0044 (17)	0.0180 (17)
C11	0.050 (2)	0.064 (2)	0.059 (2)	-0.0017 (18)	-0.0064 (19)	0.009 (2)
C12	0.054 (2)	0.063 (2)	0.050 (2)	0.0173 (19)	-0.0115 (18)	0.0091 (19)
C13	0.069 (3)	0.055 (2)	0.046 (2)	0.016 (2)	-0.0006 (19)	0.0208 (18)
C14	0.048 (2)	0.0377 (18)	0.0313 (17)	0.0019 (15)	-0.0016 (14)	0.0093 (14)
C15	0.065 (2)	0.041 (2)	0.057 (2)	-0.0011 (18)	-0.0061 (18)	0.0183 (17)
C16	0.084 (3)	0.044 (2)	0.077 (3)	0.017 (2)	-0.013 (2)	0.024 (2)
C17	0.067 (3)	0.061 (2)	0.066 (3)	0.023 (2)	-0.003 (2)	0.008 (2)
C18	0.054 (2)	0.058 (2)	0.064 (2)	0.0099 (19)	0.0120 (19)	0.0217 (19)
C19	0.049 (2)	0.0395 (19)	0.0426 (19)	-0.0007 (16)	0.0011 (16)	0.0103 (15)
C20	0.0380 (18)	0.0421 (18)	0.0351 (18)	-0.0026 (15)	-0.0020 (14)	0.0129 (15)
C21	0.046 (2)	0.0458 (19)	0.046 (2)	0.0005 (16)	0.0052 (16)	0.0133 (16)
C22	0.065 (2)	0.063 (2)	0.0367 (19)	-0.005 (2)	-0.0083 (18)	0.0106 (17)
C23	0.059 (2)	0.070 (3)	0.058 (3)	-0.002 (2)	-0.0115 (19)	0.030 (2)
C24	0.050 (2)	0.053 (2)	0.067 (3)	0.0056 (17)	-0.0057 (19)	0.0248 (19)
C25	0.0432 (19)	0.049 (2)	0.0407 (19)	-0.0006 (16)	0.0011 (15)	0.0117 (15)
N1	0.0479 (16)	0.0360 (14)	0.0337 (14)	-0.0023 (12)	-0.0069 (12)	0.0095 (11)
N2	0.0532 (17)	0.0366 (14)	0.0405 (16)	0.0062 (12)	0.0007 (13)	0.0117 (12)
N3	0.0463 (16)	0.0445 (15)	0.0422 (16)	0.0042 (13)	0.0040 (13)	0.0157 (13)
N4	0.0567 (18)	0.0476 (16)	0.0436 (16)	0.0035 (14)	0.0008 (14)	0.0152 (14)
N5	0.0569 (19)	0.0499 (17)	0.0538 (18)	0.0121 (15)	0.0124 (15)	0.0213 (14)
01	0.0910 (19)	0.0381 (14)	0.0542 (15)	-0.0024 (13)	-0.0156 (13)	0.0157 (11)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—N2	1.267 (4)	C12—H12A	0.9300
C1—N1	1.416 (4)	C13—N4	1.340 (4)
C1—C4	1.476 (4)	C13—H13A	0.9300
C2—N2	1.473 (4)	C14—N5	1.331 (4)
С2—С9	1.509 (4)	C14—C15	1.384 (4)
С2—С3	1.552 (4)	C15—C16	1.363 (5)
C2—H2B	0.9800	C15—H15A	0.9300
C3—N1	1.477 (4)	C16—C17	1.368 (5)
C3—C14	1.509 (4)	C16—H16A	0.9300
С3—Н3В	0.9800	C17—C18	1.369 (5)
C4—N3	1.330 (4)	C17—H17A	0.9300

C4—C5	1.380 (4)	C18—N5	1.331 (4)
C5—C6	1.371 (4)	C18—H18A	0.9300
С5—Н5В	0.9300	C19—O1	1.222 (3)
C6—C7	1.361 (5)	C19—N1	1.366 (4)
С6—Н6А	0.9300	C19—C20	1.483 (4)
С7—С8	1.377 (4)	C20—C25	1.383 (4)
C7—H7A	0.9300	C20—C21	1.385 (4)
C8—N3	1.332 (4)	C21—C22	1.381 (4)
C8—H8A	0.9300	C21—H21A	0.9300
C9—N4	1.327 (4)	C22—C23	1.358 (5)
C9—C10	1.373 (4)	C22—H22A	0.9300
C10—C11	1.369 (4)	C23—C24	1.373 (5)
C10—H10A	0.9300	C23—H23A	0.9300
C11—C12	1.369 (5)	C24—C25	1.384 (4)
C11—H11A	0.9300	C24—H24A	0.9300
C12—C13	1.362 (5)	C25—H25A	0.9300
N2—C1—N1	114.6 (3)	C12—C13—H13A	118.3
N2—C1—C4	122.2 (3)	N5-C14-C15	122.2 (3)
N1—C1—C4	122.7 (3)	N5-C14-C3	116.2 (3)
N2—C2—C9	113.5 (3)	C15—C14—C3	121.6 (3)
N2—C2—C3	105.2 (2)	C16—C15—C14	119.3 (3)
C9—C2—C3	114.1 (2)	C16—C15—H15A	120.3
N2—C2—H2B	107.9	C14—C15—H15A	120.3
С9—С2—Н2В	107.9	C15—C16—C17	119.0 (3)
C3—C2—H2B	107.9	C15-C16-H16A	120.5
N1—C3—C14	111.5 (2)	C17—C16—H16A	120.5
N1—C3—C2	98.9 (2)	C18—C17—C16	118.4 (4)
C14—C3—C2	115.8 (3)	С18—С17—Н17А	120.8
N1—C3—H3B	110.1	C16—C17—H17A	120.8
С14—С3—Н3В	110.1	N5-C18-C17	123.8 (4)
С2—С3—Н3В	110.1	N5—C18—H18A	118.1
N3—C4—C5	123.3 (3)	C17-C18-H18A	118.1
N3—C4—C1	116.2 (3)	O1—C19—N1	119.1 (3)
C5—C4—C1	120.3 (3)	O1—C19—C20	121.1 (3)
C6—C5—C4	118.7 (3)	N1—C19—C20	119.5 (3)
C6—C5—H5B	120.6	C25—C20—C21	118.8 (3)
C4—C5—H5B	120.6	C25—C20—C19	122.2 (3)
C7—C6—C5	118.9 (3)	C21—C20—C19	118.7 (3)
С7—С6—Н6А	120.5	C22—C21—C20	120.1 (3)
С5—С6—Н6А	120.5	C22—C21—H21A	119.9
C6—C7—C8	118.6 (3)	C20—C21—H21A	119.9
С6—С7—Н7А	120.7	C23—C22—C21	120.6 (3)
С8—С7—Н7А	120.7	C23—C22—H22A	119.7
N3—C8—C7	123.8 (3)	C21—C22—H22A	119.7
N3—C8—H8A	118.1	C22—C23—C24	120.2 (3)
С7—С8—Н8А	118.1	С22—С23—Н23А	119.9
N4—C9—C10	123.1 (3)	С24—С23—Н23А	119.9
N4—C9—C2	114.1 (3)	C23—C24—C25	119.9 (3)
C10—C9—C2	122.8 (3)	C23—C24—H24A	120.1

C11—C10—C9	118.8 (3)		C25—C24—H24A		120.1
C11-C10-H10A	120.6		C24—C25—C20		120.4 (3)
C9—C10—H10A	120.6		C24—C25—H25A		119.8
C10-C11-C12	118.9 (3)		C20—C25—H25A		119.8
C10-C11-H11A	120.5		C19—N1—C1		132.2 (3)
C12—C11—H11A	120.5		C19—N1—C3		121.1 (2)
C13—C12—C11	118.8 (3)		C1—N1—C3		106.6 (2)
C13—C12—H12A	120.6		C1—N2—C2		107.4 (2)
C11—C12—H12A	120.6		C4—N3—C8		116.6 (3)
N4—C13—C12	123.3 (3)		C9—N4—C13		117.1 (3)
N4—C13—H13A	118.3		C14—N5—C18		117.3 (3)
N2—C2—C3—N1	25.5 (3)		N1-C19-C20-C21		-145.6 (3)
C9—C2—C3—N1	150.6 (3)		C25—C20—C21—C22	2	-1.7 (5)
N2—C2—C3—C14	-93.6 (3)		C19—C20—C21—C22	2	-175.4 (3)
C9—C2—C3—C14	31.4 (4)		C20—C21—C22—C23	3	3.0 (5)
N2—C1—C4—N3	-144.7 (3)		C21—C22—C23—C24	Ļ	-2.4 (6)
N1—C1—C4—N3	26.8 (4)		C22—C23—C24—C25	5	0.6 (5)
N2—C1—C4—C5	31.4 (4)		C23—C24—C25—C20)	0.7 (5)
N1—C1—C4—C5	-157.1 (3)		C21—C20—C25—C24	ļ	-0.2 (5)
N3—C4—C5—C6	0.0 (5)		C19—C20—C25—C24	ŀ	173.3 (3)
C1—C4—C5—C6	-175.8(3)		01-C19-N1-C1		-168.1(3)
C4—C5—C6—C7	-0.1 (5)		C20—C19—N1—C1		18.4 (5)
C5—C6—C7—C8	0.2 (5)		01—C19—N1—C3		16.1 (5)
C6—C7—C8—N3	-0.3(5)		C20—C19—N1—C3		-157.4(3)
N2-C2-C9-N4	-178.9(3)		N2-C1-N1-C19		-160.5(3)
C3—C2—C9—N4	60.5 (4)		C4-C1-N1-C19		27.4 (5)
N2—C2—C9—C10	0.0 (4)		N2-C1-N1-C3		15.7 (3)
C3—C2—C9—C10	-120.6(3)		C4—C1—N1—C3		-156.4(3)
N4—C9—C10—C11	-1.8 (5)		C14—C3—N1—C19		-85.2 (3)
C2—C9—C10—C11	179.4 (3)		C2-C3-N1-C19		152.4 (3)
C9—C10—C11—C12	1.2 (5)		C14—C3—N1—C1		98.1 (3)
C10-C11-C12-C13	0.2 (5)		C2-C3-N1-C1		-24.3 (3)
C11—C12—C13—N4	-1.1 (5)		N1—C1—N2—C2		2.3 (3)
N1—C3—C14—N5	-62.1 (3)		C4—C1—N2—C2		174.4 (3)
C2—C3—C14—N5	49.9 (4)		C9—C2—N2—C1		-143.8 (3)
N1—C3—C14—C15	117.1 (3)		C3—C2—N2—C1		-18.3 (3)
C2—C3—C14—C15	-130.9 (3)		C5—C4—N3—C8		-0.1 (4)
N5-C14-C15-C16	0.0 (5)		C1—C4—N3—C8		175.9 (3)
C3—C14—C15—C16	-179.2 (3)		C7—C8—N3—C4		0.2 (5)
C14—C15—C16—C17	-0.1 (5)		C10-C9-N4-C13		0.9 (5)
C15—C16—C17—C18	-0.5 (6)		C2-C9-N4-C13		179.8 (3)
C16-C17-C18-N5	1.4 (6)		C12—C13—N4—C9		0.6 (5)
O1—C19—C20—C25	-132.3 (3)		C15—C14—N5—C18		0.7 (4)
N1—C19—C20—C25	41.0 (4)		C3—C14—N5—C18		180.0 (3)
O1—C19—C20—C21	41.1 (5)		C17—C18—N5—C14		-1.5 (5)
					~ /
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· <i>A</i>

C13—H13A···O1 ⁱ	0.93	2.57	3.469 (5)	163
C15—H15A…N4 ⁱ	0.93	2.56	3.483 (5)	171
C5—H5B···N4 ⁱⁱ	0.93	2.69	3.515 (5)	149
C21—H21A····N3 ⁱⁱⁱ	0.93	2.56	3.413 (5)	153

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+2.

